• Pada Algoritma pencarian banyak yang bisa kita temukan atau gunakan. Ada Merge Sort, Quick Sort, Bubble Sort, dan...
  • Pada dasarnya algoritma searching banyak kita jumpai. Apalagi hanya untuk mencari nilai minimum dan nilai maximum...
  • Kalian pasti sudah tahu apa itu Deret Fibonacci, ya benar. (Padahal gak jawab). Tetapi pada pembahasan kali ini kita akan membuar program...
  • Metoda Pencarian Biner ( Binary Search) hanya bisa diterapkan jika data array sudah terurut. Pengurutan Array bisa menggunakan jenis sorting ...
  • Salah satu contoh tipe algoritma brute force lainnya adalah linear search (pencarian berurutan), Dikatakan demikian karena algoritma ini menggunakan ...

Friday, June 3, 2011

Sorting by Diminishing Increment : Sort The Random Numbers by Way of Sorting by Diminishing Increments


Problems on the case this time as follows, given a randomly ordered set  of n numbers sort them into non-descending ordered using Shell’s diminishing increment menthod.

We can develop a sorting algorithm by diminishing increment following. A method is needed that initially move element s over long distances then, as the sort progresses,
the distance over which elements are compared and moved is decreased. One strategy for an array of size n is to start by comparing elements over a distance of n/2 and then successively over the distances n/4, n/8, n/16, ..., 1.

Consider what happens when the n/2  idea is applied to the data set below.

After comparison and exchanges over the distance n/2 we have n/2 chains of length two that are “sorted”.

The next step os ro compate elements over a distance n/4 and thus produce two sorted chaind of length  4.

Notice that after the n/4 sort the “amount of disorder” in the array is relatively small.
The final step is to form a single sorted chain if length 8 by comparing and sorting elements distance 1 apart.


Algorithm Description
1. Establis the array a[1..n] of n element.
2. Set the increment size inc to n.
3. While the increment size is greater than one do
                a. Decrease inc by a factor of 2,
                b. For all the inc chains to be sorted at gaps of inc do
                                1) Determine position k of second member of current chain,
                                2) While end of current chain not reached do
                                                a) Use insertion mechanism to put x = a[k] in place
                                                b) Move up current chain one by increading k by inc.

Pascal Implementation

We can make algorithm pascal in C + +. To program in C + + can be downloaded via ziddu. Check it dot!

referensi : How To Solve It By Computer_R.G. Dromey

Jadilah yang pertama mengomentari

Post a Comment

Tutorial Algorithm and Programming ©Template Blogger Green by Dicas Blogger.

To Up